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Reconstruction of Serially Acquired Slices Using
Physics-Based Modeling
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Abstract—This paper presents an accurate, computationally based methods [4], feature-based methods using contours [5],
efficient, fast, and fully automated algorithm for the alignment of - methods using crest lines or characteristic points extracted from
two-dimensional (2-D) serially acquired sections forming a 3-D na jmages [6], [7], and gray level-based registration techniques
volume. The approach relies on the determination of interslice ina the int it f1h tire | 81-1111. Most of th
correspondences. The features used for correspondence are ex4SIing the !n ensities 9 e entire |mag(_a [8]-{11]. Mos O, e_
tracted by a2-D physics_based deformable model parameterizing aforementloned teChanueS dO not ConS|der one Of the maJOI’ d|f'
the object shape. Correspondence affinities and global constrains ficulties involved in medical image registration, i.e., the slice
render the method efficient and reliable. The method accounts variation and non uniformity of thickness. To be more precise,
for one of the major shortcomings of 2-D slices alignment of a j js often the case that slices are obtained using methods (such

3-D volume, namely variable and nonuniform thickness of the hvsical tioni that t th f bei |
slices. Moreover, no particular alignment direction is privileged, as physical sectioning) that prevent them from being always

avoiding global offsets, biases, and error propagation. The method €qually thick. This can happen not only when the acquired slices
was evaluated on real images and the experimental results demon-are parallel to each other, but also when the slices themselves
strated its accuracy, as reconstruction errors were smaller than may exhibit non uniformity in thickness, which is the most in-
1 degree in rotation and smaller than 1 pixel in translation. terest to us. Moreover, these effects are more pronounced when
Index Terms—mage registration, misalignment, physics-based distant slices are involved in the registration. From this point
deformable modeling, registration error, 2-D serially acquired im-  of view, a registration method must be robust to missing data or
ages. outliers [8], [11]. Furthermore, sequential slice registration (i.e.,
registering the second slice with respect to the first one, the third
l. INTRODUCTION with respect to the second, etc.) leads to a different type of mis-
. . . registration. In this case, if an error occurs in the registration of a
N the past few years, the three-dimensional (3-D) medma ce with respect to the preceding slice, this error will propagate

image reconstruction (€.g., CT, tissue sections, and autotr ‘ough the entire volume. If the number of slices to be regis-

diographic slices) has been a very important topic in biomedict% ed is large, a global offset of the volume may be observed
research. As one can very easily establish, a variety of imagi e to error a’ccumulation [9] '

FJEVICES has been.used n 3-D me_,-d|cal 'maging. Vanqus 3Dy this paper, a solution to the above mentioned shortcomings

Image representations have been_ introduced, the dominant ggresented. A method determining correspondences between
beln?l tlh_e represl_entatlgrrw] o;SbD Il_mages asbseqlgencgs of & ially acquired slices is proposed. The features used for cor-
sara ed_lmaget?ces. i et' i TS Ices mayf N algnel orl\r;l E!lspondence are extracted by a finite element-based model pa-
depending on the application. 10 hame a 1ew examples, meterizing the object shape. Although, finite element methods

images are aligned, whereas biological tissue image slices @gb- Ms) are a powerful tool in computer vision applications,

talne_d using a microtome and @ MIcroscope are not. ”_1 f ey have not yet been extensively considered for the registra-
all slices obtained though physical sectioning are not allgnq of serially acquired slices
og )

One can safely deduce from the above that the reconstruction ur method works as follows. We model each slice contour by

the corresponding 3-D volumes of the aforementioned data S€{%et of contour nodes using a 2-D physics-based deformable

performed by the registration of the 2-D slices, has become s ntour modeling technique [12], [13]. We establish mode

creasingly valuable. Moreover, multiple slice registration is eg; respondences among contour nodes of consecutive slices
sential in order to visualize these structures in 3-D space ahng[ng special mode affinity metrics. We automatically prune

perform morphometric analysis (i.e., surface/volume represelbde correspondences that do not make sense. Finally, we align

tfit'on)' Past research has produ.ced a number of _allgnment ?%%’various slices by using valid node correspondences and the
rithms that are related to the registration of 2-D slices. A revie

f | medical i trati thods i ; d(\f\élculation of the optimal rotation and translation matrices.
of general medical image registration methods is presented iy | approach was motivated by a FEM technique pre-

[1]1_7[13].3 D ucti thods (f 2D el i sented in [14], which consists in determining correspondences
€ o-b reconsiruction metho s (from e .p_ara_e 'magefy)etween objects for recognition using eigen-decomposition
may be classified in the following categories: fiducial markerainalysis. However, our method determines correspondences
between slices exploiting contour information obtained by the
Manuscript received January 17, 2003; revised September 1, 2003 drgle vibrations of an initial circular model (physics-based mod-
September 5, 2003. o Cersity §1NG) [12], [13]. Model matching using physics-based models
The authors are with the Department of Informatics, Aristotle University o d hod rob issing d Furth lobal
Thessaloniki, 54124 Thessaloniki, Greece (e-mail: pitas@zeus.csd.auth.gr)f €NDErs our method robust to missing data. Furthermore, globa

Digital Object Identifier 10.1109/TITB.2003.821335 affinities between correspondences and their filtering render

1089-7771/03$17.00 © 2003 IEEE



KRINIDIS et al. RECONSTRUCTION OF SERIALLY ACQUIRED SLICES 395

our method more efficient and reliable, overcoming major
alignment problems such as nonuniformity in slices thickness.

The remainder of the paper is organized as follows. The
physics-based deformable model used as the feature generator
is presented in Section II. In Section lll, the determination of
the correspondences between slices is introduced. Experimental
results are presented in Section IV and conclusions are drawn
in Section V.

(a)

Il. 2-D PHYSICS-BASED DEFORMABLE CONTOUR MODELING

In this section, we introduce our physically based deformaé: 1. Contour modeling of a 2-D slice of a 3-D tooth germ volume. (a) The
. e . initial circular model initialized around the object to be parameterized. (b) The
model, which we use for parameterizing the object shape. W&ormable model at equilibrium (25% of the vibration modes are kept).

consider both the surface and volume properties of the objects

at hand. We restrict ourselves to elastic deformations, i.e., W&rink to a point. We assume that, at any future time, this equi-

assume that the object recoversiits original configuration as sq@j¥ium force is constant. Hence, the natural state of the model

as all applied forces causing the deformation are removed. s jts injtial configuration. This assumption has a main advan-
Each slice is separately parameterized by an elastic physiggse, that the model can be considered within the framework of

based deformable model [12], [13]. The model consist&Vof |inear elasticity, i.e., (2) is transformed in a set of linear differ-

virtual masses sampled on a circular structure, following a Cirglg,tia| equations with node displacements decoupled in each co-

that surrounds the 2-D object slice as shown in Fig. 1(a). Eagpyinate, regardless of the magnitude of the displacements. To

model node has a massand is connected 10 its two neighborgnforce the assumption of constant equilibrium fofcg-), the

with identical springs of stiffness. Constantd: andim describe  5ngylar variations of the spring orientation should be sufficient

the physical characteristics of the model and determine its physs 4| (< 15°), in which case the aforementioned approxima-

ical behavior. Wherk increases, the object tends to behave asg, is valid [15], [16].

rigid one, which means, in practice, that the model can be spaTpe governing equation can now be written in a matrix form

tially moved without any deformation. On the other hand, whegr 7

m increases, the model tends to be treated as a fully deformable

one, which means that each force affects only the node (mass) Mi+Cu+Ku=" 3)

it is applied to. Furthermore, these model nodes are points on

the object contour at equilibrium and do not represent interighereu is the nodal displacements vecter = v; — vy, ). M,

object regions. The node coordinates of the model under exam-andK [12], [13], [17], [18] are the mass, damping, and stiff-
ination are stacked in vector ness matrices of the model, respectively, fing the external

force vector, usually resulting from the attraction of the model
by the object contour (usually based on the Euclidean distance
between the object contour and the node coordinates [19], [20]).

where N is the number of nodes (masses) of the model aﬁdquation (3) is a finite element formulation of the deformation
process.

t denotes théth deformation time instance. In the following, r . . e .

vi denotes theth component of vecto;. The model under Instead ofﬂnldlng d|rect_lythe equilibrium solution of (3), one
study, is a physics-based system governed by the fundamefitdl transform it by a basis change

dynamics equation u = Ui ()

A\ [x1>y1:~-~7117]V;1/1V]T 1)

f. (v;) + fa (v;) + font (U;) - mﬂ,; i=1,2,...,N (2) WwhereW¥ is the square nonsingular transformation matrix of
order N to be determined and is referred to as thgeneral-
wherem; is the mass of the point under study aijdts accel- ized displacementector. One effective way of choosing is
eration under total load of forceélf component of vectoé,).  Setting it equal to matrix®, whose entries are the eigenvectors
fa(+) is a damping forcef...(-) is the external load on nodeof the generalized eigenproblem
under study, and.(-) is the elastic force due to the neighbors
of each node. The above governing equation is expressed for all
model nodes, leading to a nonlinear system of coupled differen- . N
tial equations, since the displacement of a node depends on the u=2oa= Z wid;. 6
displacement of its neighbors that affect the tefirh). =t
In order to solve this system of equations, we propose to g&juation (6) is referred to as thheodal superposition equation
the natural length of the springs to zero. The length of the springke ith eigenvector, i.e., thih column of®, denoted byp,, is
is included in the elastic forcé.(-) equation. This assumptionalso called théth vibration mode; (theith scalar component
does not import any restriction to the initial configuration obf u) is its amplitude, and; is the corresponding eigenvalue
the model, if we add an equilibrium forge, (vi) = —f.(v}) (also calledfrequency. If the matrix C = &7 C® is diagonal
in (2). This force keeps the model inflated so that it does n{gtandard Rayleigh hypothesis [12]), then, in the modal space,

K¢, = W? Mg, )
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the governing matrix-form equations are decoupled inMo thata constantforce lodds applied to the contour model. Thus,
scalar equations (3) is called the equilibrium governing equation and corresponds
y - to the static problem

Ty + Gty + Wil = fi, i=1,...,N. (7)

. Ku="f. (11)
Solving these equations at timeleads tou;, and the dis-
placementin of the model nodes is obtained by the moddn the new basis, (11) is simplified @V scalar equations:
superposition (6).
In practice, we wish to approximate nodal displacemaritg

a, which is the truncated sum of thé’ low-frequency vibration In (12),
modes, wheréV! <« N

w?i; = fi. (12)

w; designates théth eigenvalue. The scalat; is the
amplitude of the corresponding vibration mode (corresponding
N to eigenvectoy,). Equation (12), indicates that, instead of com-
~U= Zaiqsi, (8) puting the displacements vectarfrom (11), we can compute
= its decomposition in terms of the vibration modes of the original
circular model.
Thus the deformations of the described deformable model
can be given by

Eigenvectorsp, form thereduced modal basisf the system.
This is the major advantage of modal analysis: it is solved in a
subspace corresponding to the truncated low-frequency vi-

bration modes of the deformable structure [12], [13], [15]. The N SN 1fbn()]
number of vibration moded’’ retained in the object descrip- Z 1 N 5 ¢i () (13)
tion is chosen so as to obtain a compact but adequately accurate (1+ w Zn=1 ¢ (J)

contour representation. A typicapriori value forN', covering and the final contour representations finally given by adding

many types of standard deformations is equal to one-quarter, WL deformations to the initial circular moce)
the number of the vibration modes. For instance, if we conS|der

a model of 1000 nodes and a volume of 128 slices, an equation v=vy+u. (14)
system (3) comprising af x 1,000 x 128 = 256 000 equa-
tions has to be solved. It is clear that the equation system inln our case, each slice of the 3-D volume is described in
the reduced subspace (25% of the vibration modes were kegfyms of vibrations of an initial model. Figs. 1 and 2 illustrate
would noticeably reduce the computation time, as it would cothe vibration modes based parameterization of the 2-D slices of
tain2x 1000 x 128 x 25% = 64 000 equations. Besides reducinga tooth germ volume. The 25% lowest frequency modes were
the deformation execution time, deformation in a reduced modg&tained for this representation as this truncated description
space is directly related to the volume slices thickness nonuprovides a satisfactory compromise between accuracy and
formity problem and to the erroneous contour cuts created gmplexity of the representation. The circular contour model
tissue tears. These contour jaggy detail information lies in tiginitialized around each slice [Fig. 1(a)] and the vibration
high-frequency modes. Thus, by removing these frequenci®plitudes are explicitly computed by (12). Rigid body motion
and taking into account only a sufficient number of low-fremodes(w; = 0) are discarded and the nodal displacement are
quency vibration modes, we solve the contour jaggy problerfgcovered using (8).
(thickness problem and erroneous contour cuts). External forced; used in (13) denote theandy components

An important advantage of the formulations described so f&f, the forces acting on node
in the full as well as the truncated modal space, is that the vibra-
tion modes (eigenvectorg) and the frequencies (eigenvalues) f=[for fy1s fo2 fyr s fav, fyN]" (15)

w; of a closed circular topology have an explicit formulationhereN is the number of model nodes. Each force value is
[12] and they do not have to be computed using eigen-decoyinnted based on a distance transform metric between the

position techniques model position and the object contour. A distance transform can
, Ak ., (i be used to this end [20]-[22]. A distance transformation is an
< ) © operation that converts a binary picture, consisting of contour

points and background, to a grayscale picture where each pixel

¢, = { B 27”J (10) has an intensity proportional to its distance to the nearest con-
tour point [23]. This distance transformation drives the external

where: € {1,2,...,N} andjeB(N). B(N) is the first Bril- force generator
louin zone [12] and is equal to—(N/2) + 1,...,N/2} for 1 e

N even, and{—((N — 1)/2),...,((N — 1)/2)} for N odd. fi = jwlldist]|”. (16)
This is the reason we have chosen and used a circular model
topology, in spite of its low efficiency in describing complex
shapes (e.g., objects with more that one contours and/or large
contour curvature). Having modeled the object contours using the physics-based

In many computer vision applications [13], when the initiatleformable model (14), the next step is to determine interslice

and the final deformable contour states are known, it is assuneanirespondences between the contour model parameters, in

I1l. N oDE CORRESPONDENCES ADIFFERENT SLICES
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(a) (b) (c) (d)

columnj which is also the minimum in the corresponding row
i of matrix Z9°. Because of the reduced basis matching, sim-
ilarity of the generalized features is required in both directions
(rows and columns) instead of one direction only (either row or
column). In other words, a match between ttienode in a cer-
tain slice and thgth node in a candidate slice can only be valid
if z{2° is the minimum value for its row, ang?* the minimum

)
for its column.

B. Outlying Correspondence Rejection

A measurel?° expressing the continuity of correspondences
between nodes (belonging to slic@sand.S), is also computed

@S (p,?) - ‘Rank (p?) — Rank (@5 (p?))‘ (19)

wherep® = (z2,%) denotes théth node of sliceR, ©5 (p?)

its corresponding node on sliGeand| - | the L; norm.Rank(-)

is a function measuring the position of a node in a contour with
(m) . respect to a reference (starting) node [24]. Having computed
des (p?) (19) for all node correspondences between sli@es

Fig. 2. Contour modeling of 2-D slices of a 3-D tooth germ volume of 26 nd S. our method accepts only correspondences satisfvin
slices. The deformable model at equilibrium is illustrated on 16 representat?ﬁ_)] [’26] P y P fy 9

slices.
Qs (,,Q ; QS (,Q
other words, the correspondences between the contour nodes (pi ) < 1.4826 s median {d (pk)} (20)
of two slices. here 1.4826 is the standard robust regression constant [25
To determine correspondences, we use veatof (8), ex- w 4620 |  robu 9 ! [25],
pressed as [27]. Assuming that the continuity of corresponden

has a Gaussian distribution, the aforementioned constant is a
U= ®h = [ty 1, Uy 1, U2, Uy2, - Uz N, Uy y] . (17) TObUst threshold eliminating the correspondence outliers [25],
[27]. These outliers are either anatomical structures appearing
whereN'’ denotes the number of retained modes and (u,.;) in one slice without a counterpart in other volume slices, or
describes the displacement of tita node atX andY axis, erroneous contour cuts created by tissue tears. In both cases,
respectively. the condition (20) discards the outliers, enabling only the use
Thus, in order to determine the correspondences between ftode correspondences with reasonable continuity.
slices@ and S, we build the generalized displacement vectors An example of the previously described outlier rejection
u? andu®, respectively, and compare them. The comparisgrocedure is presented in Fig. 3. Two successive slices from a
of these vectors is based on a metric measuringaffinity 3-D tooth germ volume are presented. For convenience, only
between vector elements (contour nodes), i.e., a matrix whiftfe correspondences are selected. The ngéles: p. of slice
indicates how an element of the vecta® is related to the ; correspond to nodgs™! - --pit! of slicei + 1 according to
elements of the vectan® (Section IlI-A). This node relation (18). Their continuity measures are shown in Table I. As can
directly determines the node correspondences. Sections IIbB observed most of the correspondences have similar values,
and IlI-C describe how outlying and fault correspondencesound 40, apart from the last node correspondepigep(™)
are rejected. Section 1lI-D describes the computation of tigving continuity 221. This result can be extracted visually

desired node rotation and translation matrices. from Fig. 3, as the first four correspondences connect consecu-
o . tive points, while the last one corresponds to an outlying node
A. Affinity Matrix correspondence.

We now compute what are referred to as the affinities between o
the two generalized displacement vectaf®, us (17). These C. Global Affinities

are stored in @& x N affinity matrix 7S, where Let us define a set of functions of type
2 2 .
ng _ ‘ 2@ — 28|+ ‘ y@ —ys (18) Gle-s| (pQ pS) _ { 1, if nodep corresponds tp?
1 147y

0, ifthereis no correspondence
|| -||? denotes théd., norm and andsS are the slices under ex- Q. ) ) - ] (21
amination. The affinity measurg?® for theith and;jth nodes wherep;” is theith node of slice andp;’ is the jth node of
(of slices@ and S, respectively), is zero for a perfect matctslice S. Let us also define the correspondence mam‘gsgs'
and increases as the match worsens. Using the affinity methetween sliceg) and S as follows:
we can easily identify which node corresponds to each other in Q-S| - Q=51 (@ .5
the two slices by looking for the minimum entef”® in each Cos '(i,4) = [g (Pi D3 )} (22)
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feature point

— : correspondent points
s Slice n+1 B
valid / 5
correspondence . P

Slice i+1
—  / invalid

‘/‘\CON*"POndcans

€ me
P’ Slice n e

— X

Q Slice n- 1>;
- < B

P

Fig. 3. Example of correspondences that minimize the contour affinifyig. 4. Example of pointcorrespondences between three successive slices. The
metric between points of two successive slices of a 3-D tooth germ. Only fip@ints[py ~*, p}, pi™**] are considered as corresponding points, because the
correspondences are presented for convenience. Thepairt ') is awrong ~ correspondencesy, pi*'], [p7 =", py] and[py =", pi*'] are all valid.
correspondence.

D. Rotation and Translation Estimation

TABLE |
OUTLYING CORRESPONDENCEREJECTIONEXAMPLE. CONTINUITY MEASURES After having validated and pruned the node correspondences,
BETWEENFIVE POINTS OFTWO SUCCESSIVESLICES (SHOWN IN FIG. 3) our algorithm determines the rigid transformation parameters

(2-D rotation and translation) aligning the respective slices. The
rotation matrixR and the translation vectdr are estimated for

Slice; | Slicei+1 | Rank(p®) | Rank(p'™") | d"*1' | decide

le 1’11: 10 49 39 | accept  each slice, in order to minimize the mean square error between
P2 P2 51 93 42 | accept  the remaining corresponding nodes [28].
Ps Py ;g? ;g‘; ‘3‘; accep: Let a sample covariance matrix (2 2) of the position of
21 Py APt corresponding nodgs? andp? in slicesQ andS, respectivel
| T 18 239 21| reect o ponding nodgs” andp; (2 ands, resp y
1 L
whereclggs‘ isalN x N matrix, where\ is the total number of Cos=+3. (PZ'Q _ #Q) (pS — #S)T (25)
the contour nodes. Finally, we define the set of correspondence L i=1

matrices between equidistant slices whereL is the number of corresponding nodes agdandug

£ ={ct cr ... Cn } (23) are the mean vectors of the coordinates of the corresponding
1,n+1°%2,n+2> s Y A—n,A . . . .
nodes in slices) and.S, respectively. Let us perform a singular
whereA is the total number of slices andis the distance be- value decomposition of )5
tween the slices under examinationnlis equal to 1, point cor- " '
respondences are restricted to successive slice pairs. Cqos =UDV", D =diag(d;),d1 >dp >0.  (26)

Global affinities exploit and combine information from all

node correspondence matrix sets, successivefainsterlaced Whenrank(Cqs) 2 1, the optimum rigid object transforma

£?, etc. They can be used to discard any remaining fatﬁ'l?n parameters are determined uniquely as follows [28]:

correspondences as follows. Let us assume that we have the R=UPVT 27)
correspondence matrix sef8 and £2 shown in Fig. 4. A T— _ 'R (28)
correspondence between nogle of the nth slice andp?Jr1 _”'IQ ciihts

of slice n + 1 is valid only if ¢ = —tr(DP) (29)

Os
Gt (prpith) -Gt (Pl G () =1 (29) L 1 \
wherek is a node belonging to tHe: — 1)th slice. If expression STL ; sz MSH (30)
(24) is verified, the initial correspondence between pojrits
andp”* is accepted, otherwise it is discarded. and
In other words, a correspondence between two slices is valid, B { I if det(Cgs) >0 (31)
only if it is sustained on more that one consecutive slices. For ~ ) diag(l,—1) if det(Cgs) <0

example, a correspondengg't?, p7) from the&' correspon- , ) ) ) , ,
dence set is valid only if there is a valid correspondenge ( _Fmally, the overall alignment algorithm is summarized in
pt~ 1) and a correspondencgl(*!, p7 1) in the&? point corre- Fig. 5.

spondence set (Fig. 4). If even one of the aforementioned corre-

spondences is missing, the correspondepit€’(, py) is flagged IV. EXPERIMENTAL RESULTS

as invalid. On the other hand, the correspondepge’(, p3 ) To evaluate our method, we applied the proposed algorithm to
is missing and consequently the correspondep@élg p3)is the reconstruction of a large number of volumes. We used vol-
not accepted (the same stands for the n@@éé, j24 andpz_l). umes (e.g., Figs. 6 and 7) with knowround truth i.e., aligned
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o for each slice do
— deform the initial circular physics-based model (11-14)
« end for
« for each successive slice pairs do
— compute correspondence affinities (18), i.e. compute nodal correspondences
— eliminate outlying correspondences (19-20)
« end for
« determine the correspondence sets (€1, £2, etc), (23)
« for each slice n do
— for each node i do
* if node 4 has correspondence in £! (correspondent point j in slice n + 1 do
- compute expression (24)
- if (24) is equal to zero, discard the correspondence
- else, accept the correspondence
- end if
* end if
— end for

« end for
« for each slice do

— estimate rotation and translation
— apply transformations

« end for

Fig. 5. Flowchart of the overall alignment algorithm.

Furthermore, in order for our algorithm to operate properly, the
existence of an obvious foreground and background in the vol-
umes, is necessatry, i.e., the object under alignment needs to be
segmented, either manually or automatically [29].

As aforementioned, our method was applied to the recon-
struction of an artificially misaligned 3-D human skull shown
in Fig. 6. Our method is not intended to be used for CT or MRI
images, since they are inherently aligned. We present the CT
examples only to show that we can recover the 3-D volumes
after artificial misalignment and verify the performance of our
method. Thus, the slices of the originzil6 x 256 x 140 CT
volume were transformed using translations, ¢,) with ¢,
t, varying from —10 to +10 pixels and rotationg varying
from —40 to +40 degrees. The transformation parameters of
translation and rotation for each slice followed a uniform dis-
tribution. The misaligned slices are shown in Fig. 6(a) and
Fig. 6. Reconstruction of a 3-D human skull volume of 140 slicedD). The human skull volume has discontinuities and con-
(a) Multiplanar view of the volume before registration. (b) 3-D view ofsecutive slices may differ significantly due to skull anatomy.
the volume before registration. (c) Multiplanar view of the volume afterjq\yever, the correspondence evaluation was proven robust to
registration. (d) 3-D view of the volume after registration. . .. .

these shortcomings. Table Il presents statistics on the align-
ment parameter errorat,, At, and Af. As can be seen,

volumes which are used as reference for the performance of thedian and mean translation and rotation errors are less than
algorithm. They are manually, artificialljnisaligned i.e. they 1 pixel and 1 degree, respectively. Also, maximum errors are
are randomly transformed using translatiofis {,) with ¢,,, ¢,  slightly larger than 1 pixel and 1 degree, respectively, showing
varying from—10 to+10 pixels and rotationg varying from the robustness of the proposed technique. Fig. 6(c) and (d)
—40 to+40 degrees, in order to measure and confirm the regresent the realigned volume.
istration accuracy and efficiency of our algorithm. Moreover, The same evaluation procedure was performed on a 3-D CT
we applied our method on volumes with unknown ground trutanned volume of a mechanical part with 109 slices shown in
(e.g., Figs. 8-11), i.e., volumes acquired by a microtome, wikhg. 7. The algorithm aligned the artificially (randomly) mis-
no reference point. Thus, the alignment of these volumesabgned slices of the volume. The alignment parameter errors are
completely blind, and an efficient way to evaluate the resulgesented in Table Ill. As can be seen, median and mean trans-
is a manual evaluation by the physician-researcher who origation and rotation errors are less than 1 pixel and 1 degree, re-
nally provided the volumes and is aware of their appearanspectively. Also maximum errors are slightly larger than 1 pixel
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(b)

(d) (c) (d)

(a) Multiplanar view of the volume before registration. (b) 3-D view of th e;g.Mtsjl'ti Eg;(r)r;]tcrjuc;log Do\tie?/v ;-Rmetegrgmgea{fr::e r\r/r?gjnnljzl ;{ nzrggntstljlce:ﬁ
volume before registration. (c) Multiplanar view of the volume after registratiol ) p (b) 3- 9 y

Fig. 7. Reconstruction of a 3-D scanned mechanical part volume of 109 s”if&
(d) 3-D view of the same volume after registration.

expert dentist. (c) Multiplanar and (d) 3-D view of the volume after automatic
alignemnt.

TABLE I
ALIGNMENT PARAMETER ERROR STATISTICS OF ASET OF A 3-D CT HUMAN
SKULL VOLUME REALIGNMENT BY THE PROPOSEDMETHOD (SHOWN IN FIG. 6)

| Aty [ Aty [ A
median 0.19 0.23 0.13
maximum 1.18 1.07 1.42

mean £ s. dev | 0.29 &+ 0.26 | 0.31 £+ 0.26 | 0.38 = 0.57

and 1 degree, respectively, showing the robustness of the pro-
posed technique.

Furthermore, the algorithm was applied to the reconstruc-
tion of tooth germ volumes with unknown ground truth. The
performance of our method was compared to the manual align-
ment accomplished by an expert physician-researcher. Fig. 8
shows the reconstruction of a tooth germ by an expert den- (c)
tist-researcher [Fig. 8(a) and (b)] and by our method [Fig. 8(c)
and (d)]. It is illustrated that human intervention fails to corfig. 9. Reconstruction of a 3-D tooth germ volume of 194 slices.
rectly align the sices, whilst our method produces much fas(@} VeLpiner, (), i, view ef e voume sier manual alanment by an
alignment with higher accuracy, as confirmed by dentist special-
ists-researchers. The same stands for the examples presented TABLE Il
in Figs. 9-11, where the reconstruction of other three teeth ALGNMENT PARAMETER ERROR STATISTICS OF A SET OF A3-D CT
volumes is presented. In all the examples, a specialist (den- SCANNED MECHANICAL PART VOLUME REALIGNMENT BY THE
tist-researcher) confirmed that the volumes reconstructed by PROPOSEDMETHOD (SHOWN IN FiG. 7)
our method are of higher accuracy and visual quality. One l AL | A, [ AD
should note that the specialist needs approximately 2—-3 d t -

. . median 0.33 0.31 0.17
manually al_lgn a volume, whereas our algon_thm pen_‘orms the aximum 107 093 175
reconstruction of the same volume in a minute, with better e s dev 1038 + 036 | 042 £ 039 | 035 £ 041
results as confirmed by the specialist. Additionally, one can
take into consideration that the specialist is the only person
who knows the object under registration before its digitizaticsmpplied our algorithm to the reconstruction of some artificially
and its real appearance. This can also be observed by a sinmpigsaligned and volumes having varying slice thickness (3-D
visual inspection (Figs. 8-11), especially at their multiplandouman skull and 3-D CT scanned mechanical part). The
view. artificial misalignment was random and performed as described

Sometimes, during serial sectioning, some slices tend to jp@viously, and the slice thickness variation was achieved using
very deformed and have variable slice thickness. Thus, weo different and randomly chosen sets of sequential slices
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Before Thickness After Thickness
Transformation Transformation

Slice 1

Slice 2 Slice 1
Slice 2

Slice 9

Slice 10 8 Slice 6

Fig. 12. Slice thickness transformation in ten slices of a volume. 10 parallel
slices are transformed in order to have variable thickness.

Before Thickness After Thickness
Transformation ) Transformation
Slice 1
Slice 2 Slice 1
Slice 2
(c) (d) Slice 9
Slice 10 Slice 5

Fig. 10. Reconstruction of a 3-D tooth germ volume of 169 slices

(a) Multiplanar. (b) 3-D view of the volume after manual alignment by an

expert dentist. (c) Multiplanar. (d) 3-D view of the volume after registration. Fig. 13, Slice thickness transformation in ten slices of a volume. 10 parallel
slices are transformed in order to have variable thickness.

TABLE IV
ALIGNMENT ERROR STATISTICS OF A SET OFA 3-D CT HUMAN SKULL
VOLUME WITH SLICE THICKNESS VARIATION (SHOWN IN FIGS. 12 AND 13)
REALIGNED BY THE PROPOSEDMETHOD

[ At | Aty [ Ad
median 0.22 0.34 0.15
maximum 1.58 1.67 2.42

mean * s. dev | 0.43 £+ 0.47 | 0.41 £+ 0.51 | 0.42 & 0.62

TABLE V
ALIGNMENT ERROR STATISTICS OF A SET OF A 3-D CT SCANNED
MECHANICAL PART VOLUME WITH SLICE THICKNESS VARIATION
(SHOWN IN FIGS. 12 AND 13) REALIGNED BY THE PROPOSEDMETHOD

] At, ] At, [ Al
median 0.32 0.39 0.20
maximum 1.79 1.91 2.05

mean £ s. dev | 0.48 £ 0.52 | 0.51 + 0.59 | 0.37 £+ 0.42

Fig. 11. Reconstruction of a 3-D tooth germ volume of 161 slices . . . .
(@) Multiplanar. (b) 3-D view of the volume after manual alignment by athat our algorithm is unbiased. As can be seen, median and mean

expert dentist. (c) Multiplanar. (d) 3-D view of the volume after registration. translation and rotation errors are less that 0.2 pixel and 0.1 de-
gree, respectively. Also, maximum errors are about 1 pixel and
(ten slices each) from both volumes and fulfilled as depictdess than 0.5 degree, respectively, proving the unbiasedness of
in Figs. 12 and 13. Tables IV and V present the alignmentr method.
errors of our method. Although the errors are higher thanFinally, let us notice that the algorithm has a computational
the corresponding ones, when there is no difference in slicemplexityO(N M), whereN is the number of slices and is
thickness, they are still very low and satisfactory, showing thbe number of nodes of the deformable model. The computation
robustness of the proposed technique. time is approximately 1 min for the reconstruction o2& x
Moreover, we applied the algorithm to the realignment of &56 x 140 volume on a Pentium Ill (700 MHz) workstation
original already aligned 3-D human skull volume (the originainder Windows 2000 Professional without any particular code
volume used in Fig. 6). The results shown in Table VI illustrateptimization.
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TABLE VI 5]

ALIGNMENT ERROR STATISTICS OF AN ALREADY ALIGNED SET OF A
3-D CT HUMAN SKULL VOLUME (THE GROUND TRUTH) THAT WAS

APPLIED TO THEPROPOSEDALGORITHM

(6]

[ at. | A, | A8
median 017 021 0.05 [7]
maximum 0.98 1.03 0.89
mean £ 5. dov | 022 £ 023 | 027 £ 024 [ 033 £ 048

(8]

V. CONCLUSION
[9]

A fast and robust algorithm for the alignment of 2-D serially
acquired slices was presented. A 2-D physics-based deformable
contour modeling technique was used to parameterized the
contour of each slice of the volume under registration. Theioj

model parameters was used to establish mode correspondences

among contour nodes of consecutive slices using special mO(ilﬁ]
affinity metrics. Local and global constraints was exploited to
prune node correspondences that do not make sense, and finally,
various slices were aligned by using valid node correspondenc
and the calculation of the optimal rotation and translation

matrices. The proposed technique is proven to produce verﬁ/
low alignment errors. It is much faster and more accurate tha

manual alignment.

Furthermore, no particular registration direction is privileged*4]
by the proposed approach and the use of a global affinity
measure eliminates error propagation. Also, the low frequencys)
modal parameterization of the object contours makes the tech-
nique robust to missing data or outliers and to slice thickne5ﬁ6]
variability.

The low computation time and the good quality of the
alignment with respect to manual techniques makes the meth&jﬂ
a promising tool for the reconstruction of 3-D anatomical[18]
structures.
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