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Reconstruction of Serially Acquired Slices Using
Physics-Based Modeling
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Abstract—This paper presents an accurate, computationally
efficient, fast, and fully automated algorithm for the alignment of
two-dimensional (2-D) serially acquired sections forming a 3-D
volume. The approach relies on the determination of interslice
correspondences. The features used for correspondence are ex-
tracted by a 2-D physics-based deformable model parameterizing
the object shape. Correspondence affinities and global constrains
render the method efficient and reliable. The method accounts
for one of the major shortcomings of 2-D slices alignment of a
3-D volume, namely variable and nonuniform thickness of the
slices. Moreover, no particular alignment direction is privileged,
avoiding global offsets, biases, and error propagation. The method
was evaluated on real images and the experimental results demon-
strated its accuracy, as reconstruction errors were smaller than
1 degree in rotation and smaller than 1 pixel in translation.

Index Terms—Image registration, misalignment, physics-based
deformable modeling, registration error, 2-D serially acquired im-
ages.

I. INTRODUCTION

I N the past few years, the three-dimensional (3-D) medical
image reconstruction (e.g., CT, tissue sections, and autora-

diographic slices) has been a very important topic in biomedical
research. As one can very easily establish, a variety of imaging
devices has been used in 3-D medical imaging. Various 3-D
image representations have been introduced, the dominant one
being the representation of 3-D images as sequences of 2-D
parallel image slices. The 2-D slices may be aligned or not,
depending on the application. To name a few examples, MRI
images are aligned, whereas biological tissue image slices ob-
tained using a microtome and a microscope are not. In fact,
all slices obtained though physical sectioning are not aligned.
One can safely deduce from the above that the reconstruction of
the corresponding 3-D volumes of the aforementioned data sets,
performed by the registration of the 2-D slices, has become in-
creasingly valuable. Moreover, multiple slice registration is es-
sential in order to visualize these structures in 3-D space and
perform morphometric analysis (i.e., surface/volume represen-
tation). Past research has produced a number of alignment algo-
rithms that are related to the registration of 2-D slices. A review
of general medical image registration methods is presented in
[1]–[3].

The 3-D reconstruction methods (from 2-D parallel images)
may be classified in the following categories: fiducial marker-
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based methods [4], feature-based methods using contours [5],
methods using crest lines or characteristic points extracted from
the images [6], [7], and gray level-based registration techniques
using the intensities of the entire image [8]–[11]. Most of the
aforementioned techniques do not consider one of the major dif-
ficulties involved in medical image registration, i.e., the slice
variation and non uniformity of thickness. To be more precise,
it is often the case that slices are obtained using methods (such
as physical sectioning) that prevent them from being always
equally thick. This can happen not only when the acquired slices
are parallel to each other, but also when the slices themselves
may exhibit non uniformity in thickness, which is the most in-
terest to us. Moreover, these effects are more pronounced when
distant slices are involved in the registration. From this point
of view, a registration method must be robust to missing data or
outliers [8], [11]. Furthermore, sequential slice registration (i.e.,
registering the second slice with respect to the first one, the third
with respect to the second, etc.) leads to a different type of mis-
registration. In this case, if an error occurs in the registration of a
slice with respect to the preceding slice, this error will propagate
through the entire volume. If the number of slices to be regis-
tered is large, a global offset of the volume may be observed,
due to error accumulation [9].

In this paper, a solution to the above mentioned shortcomings
is presented. A method determining correspondences between
serially acquired slices is proposed. The features used for cor-
respondence are extracted by a finite element-based model pa-
rameterizing the object shape. Although, finite element methods
(FEMs) are a powerful tool in computer vision applications,
they have not yet been extensively considered for the registra-
tion of serially acquired slices.

Our method works as follows. We model each slice contour by
a set of contour nodes using a 2-D physics-based deformable
contour modeling technique [12], [13]. We establish mode
correspondences among contour nodes of consecutive slices
using special mode affinity metrics. We automatically prune
node correspondences that do not make sense. Finally, we align
the various slices by using valid node correspondences and the
calculation of the optimal rotation and translation matrices.

Our approach was motivated by a FEM technique pre-
sented in [14], which consists in determining correspondences
between objects for recognition using eigen-decomposition
analysis. However, our method determines correspondences
between slices exploiting contour information obtained by the
free vibrations of an initial circular model (physics-based mod-
eling) [12], [13]. Model matching using physics-based models
renders our method robust to missing data. Furthermore, global
affinities between correspondences and their filtering render
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our method more efficient and reliable, overcoming major
alignment problems such as nonuniformity in slices thickness.

The remainder of the paper is organized as follows. The
physics-based deformable model used as the feature generator
is presented in Section II. In Section III, the determination of
the correspondences between slices is introduced. Experimental
results are presented in Section IV and conclusions are drawn
in Section V.

II. 2-D PHYSICS-BASED DEFORMABLE CONTOURMODELING

In this section, we introduce our physically based deformable
model, which we use for parameterizing the object shape. We
consider both the surface and volume properties of the objects
at hand. We restrict ourselves to elastic deformations, i.e., we
assume that the object recovers its original configuration as soon
as all applied forces causing the deformation are removed.

Each slice is separately parameterized by an elastic physics-
based deformable model [12], [13]. The model consists of
virtual masses sampled on a circular structure, following a circle
that surrounds the 2-D object slice as shown in Fig. 1(a). Each
model node has a massand is connected to its two neighbors
with identical springs of stiffness. Constants and describe
the physical characteristics of the model and determine its phys-
ical behavior. When increases, the object tends to behave as a
rigid one, which means, in practice, that the model can be spa-
tially moved without any deformation. On the other hand, when

increases, the model tends to be treated as a fully deformable
one, which means that each force affects only the node (mass)
it is applied to. Furthermore, these model nodes are points on
the object contour at equilibrium and do not represent interior
object regions. The node coordinates of the model under exam-
ination are stacked in vector

(1)

where is the number of nodes (masses) of the model and
denotes theth deformation time instance. In the following,
denotes theth component of vector . The model under

study, is a physics-based system governed by the fundamental
dynamics equation

(2)

where is the mass of the point under study andits accel-
eration under total load of forces (th component of vector ).

is a damping force, is the external load on node
under study, and is the elastic force due to the neighbors
of each node. The above governing equation is expressed for all
model nodes, leading to a nonlinear system of coupled differen-
tial equations, since the displacement of a node depends on the
displacement of its neighbors that affect the term .

In order to solve this system of equations, we propose to set
the natural length of the springs to zero. The length of the springs
is included in the elastic force equation. This assumption
does not import any restriction to the initial configuration of
the model, if we add an equilibrium force
in (2). This force keeps the model inflated so that it does not

Fig. 1. Contour modeling of a 2-D slice of a 3-D tooth germ volume. (a) The
initial circular model initialized around the object to be parameterized. (b) The
deformable model at equilibrium (25% of the vibration modes are kept).

shrink to a point. We assume that, at any future time, this equi-
librium force is constant. Hence, the natural state of the model
is its initial configuration. This assumption has a main advan-
tage, that the model can be considered within the framework of
linear elasticity, i.e., (2) is transformed in a set of linear differ-
ential equations with node displacements decoupled in each co-
ordinate, regardless of the magnitude of the displacements. To
enforce the assumption of constant equilibrium force , the
angular variations of the spring orientation should be sufficient
small , in which case the aforementioned approxima-
tion is valid [15], [16].

The governing equation can now be written in a matrix form
[17]

(3)

where is the nodal displacements vector . ,
, and [12], [13], [17], [18] are the mass, damping, and stiff-

ness matrices of the model, respectively, andis the external
force vector, usually resulting from the attraction of the model
by the object contour (usually based on the Euclidean distance
between the object contour and the node coordinates [19], [20]).
Equation (3) is a finite element formulation of the deformation
process.

Instead of finding directly the equilibrium solution of (3), one
can transform it by a basis change

(4)

where is the square nonsingular transformation matrix of
order to be determined and is referred to as thegeneral-
ized displacementvector. One effective way of choosing is
setting it equal to matrix , whose entries are the eigenvectors
of the generalized eigenproblem

(5)

(6)

Equation (6) is referred to as themodal superposition equation.
The th eigenvector, i.e., theth column of , denoted by , is
also called theth vibration mode, (the th scalar component
of ) is its amplitude, and is the corresponding eigenvalue
(also calledfrequency). If the matrix is diagonal
(standard Rayleigh hypothesis [12]), then, in the modal space,
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the governing matrix-form equations are decoupled into
scalar equations

(7)

Solving these equations at timeleads to , and the dis-
placement of the model nodes is obtained by the modal
superposition (6).

In practice, we wish to approximate nodal displacementsby
, which is the truncated sum of the low-frequency vibration

modes, where

(8)

Eigenvectors form the reduced modal basisof the system.
This is the major advantage of modal analysis: it is solved in a
subspace corresponding to the truncated low-frequency vi-
bration modes of the deformable structure [12], [13], [15]. The
number of vibration modes retained in the object descrip-
tion is chosen so as to obtain a compact but adequately accurate
contour representation. A typicala priori value for , covering
many types of standard deformations is equal to one-quarter of
the number of the vibration modes. For instance, if we consider
a model of 1000 nodes and a volume of 128 slices, an equation
system (3) comprising of equa-
tions has to be solved. It is clear that the equation system in
the reduced subspace (25% of the vibration modes were kept)
would noticeably reduce the computation time, as it would con-
tain equations. Besides reducing
the deformation execution time, deformation in a reduced modal
space is directly related to the volume slices thickness nonuni-
formity problem and to the erroneous contour cuts created by
tissue tears. These contour jaggy detail information lies in the
high-frequency modes. Thus, by removing these frequencies
and taking into account only a sufficient number of low-fre-
quency vibration modes, we solve the contour jaggy problems
(thickness problem and erroneous contour cuts).

An important advantage of the formulations described so far,
in the full as well as the truncated modal space, is that the vibra-
tion modes (eigenvectors) and the frequencies (eigenvalues)

of a closed circular topology have an explicit formulation
[12] and they do not have to be computed using eigen-decom-
position techniques

(9)

(10)

where and . is the first Bril-
louin zone [12] and is equal to for

even, and for odd.
This is the reason we have chosen and used a circular model
topology, in spite of its low efficiency in describing complex
shapes (e.g., objects with more that one contours and/or large
contour curvature).

In many computer vision applications [13], when the initial
and the final deformable contour states are known, it is assumed

that a constant force loadis applied to the contour model. Thus,
(3) is called the equilibrium governing equation and corresponds
to the static problem

(11)

In the new basis, (11) is simplified to scalar equations:

(12)

In (12), designates theth eigenvalue. The scalar is the
amplitude of the corresponding vibration mode (corresponding
to eigenvector ). Equation (12), indicates that, instead of com-
puting the displacements vectorfrom (11), we can compute
its decomposition in terms of the vibration modes of the original
circular model.

Thus, the deformations of the described deformable model
can be given by

(13)

and the final contour representationis finally given by adding
the deformations to the initial circular model

(14)

In our case, each slice of the 3-D volume is described in
terms of vibrations of an initial model. Figs. 1 and 2 illustrate
the vibration modes based parameterization of the 2-D slices of
a tooth germ volume. The 25% lowest frequency modes were
retained for this representation as this truncated description
provides a satisfactory compromise between accuracy and
complexity of the representation. The circular contour model
is initialized around each slice [Fig. 1(a)] and the vibration
amplitudes are explicitly computed by (12). Rigid body motion
modes are discarded and the nodal displacement are
recovered using (8).

External forces used in (13) denote theand components
of the forces acting on node

(15)

where is the number of model nodes. Each force value is
computed based on a distance transform metric between the
model position and the object contour. A distance transform can
be used to this end [20]–[22]. A distance transformation is an
operation that converts a binary picture, consisting of contour
points and background, to a grayscale picture where each pixel
has an intensity proportional to its distance to the nearest con-
tour point [23]. This distance transformation drives the external
force generator

(16)

III. N ODE CORRESPONDENCES ATDIFFERENTSLICES

Having modeled the object contours using the physics-based
deformable model (14), the next step is to determine interslice
correspondences between the contour model parameters, in
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Fig. 2. Contour modeling of 2-D slices of a 3-D tooth germ volume of 265
slices. The deformable model at equilibrium is illustrated on 16 representative
slices.

other words, the correspondences between the contour nodes
of two slices.

To determine correspondences, we use vectorof (8), ex-
pressed as

(17)

where denotes the number of retained modes and (, )
describes the displacement of theth node at and axis,
respectively.

Thus, in order to determine the correspondences between two
slices and , we build the generalized displacement vectors

and , respectively, and compare them. The comparison
of these vectors is based on a metric measuring theaffinity
between vector elements (contour nodes), i.e., a matrix which
indicates how an element of the vector is related to the
elements of the vector (Section III-A). This node relation
directly determines the node correspondences. Sections III-B
and III-C describe how outlying and fault correspondences
are rejected. Section III-D describes the computation of the
desired node rotation and translation matrices.

A. Affinity Matrix

We now compute what are referred to as the affinities between
the two generalized displacement vectors, (17). These
are stored in a affinity matrix , where

(18)

denotes the norm and and are the slices under ex-
amination. The affinity measure for the th and th nodes
(of slices and , respectively), is zero for a perfect match
and increases as the match worsens. Using the affinity metric,
we can easily identify which node corresponds to each other in
the two slices by looking for the minimum entry in each

column which is also the minimum in the corresponding row
of matrix . Because of the reduced basis matching, sim-

ilarity of the generalized features is required in both directions
(rows and columns) instead of one direction only (either row or
column). In other words, a match between theth node in a cer-
tain slice and theth node in a candidate slice can only be valid
if is the minimum value for its row, and the minimum
for its column.

B. Outlying Correspondence Rejection

A measure expressing the continuity of correspondences
between nodes (belonging to slicesand ), is also computed

(19)

where denotes theth node of slice ,
its corresponding node on sliceand the norm.
is a function measuring the position of a node in a contour with
respect to a reference (starting) node [24]. Having computed

(19) for all node correspondences between slices
and , our method accepts only correspondences satisfying
[25], [26]

(20)

where 1.4826 is the standard robust regression constant [25],
[27]. Assuming that the continuity of correspondences
has a Gaussian distribution, the aforementioned constant is a
robust threshold eliminating the correspondence outliers [25],
[27]. These outliers are either anatomical structures appearing
in one slice without a counterpart in other volume slices, or
erroneous contour cuts created by tissue tears. In both cases,
the condition (20) discards the outliers, enabling only the use
of node correspondences with reasonable continuity.

An example of the previously described outlier rejection
procedure is presented in Fig. 3. Two successive slices from a
3-D tooth germ volume are presented. For convenience, only
five correspondences are selected. The nodes of slice

correspond to nodes of slice according to
(18). Their continuity measures are shown in Table I. As can
be observed most of the correspondences have similar values,
around 40, apart from the last node correspondence (, )
having continuity 221. This result can be extracted visually
from Fig. 3, as the first four correspondences connect consecu-
tive points, while the last one corresponds to an outlying node
correspondence.

C. Global Affinities

Let us define a set of functions of type

if node corresponds to
if there is no correspondence

(21)
where is the th node of slice and is the th node of

slice . Let us also define the correspondence matrix
between slices and as follows:

(22)
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Fig. 3. Example of correspondences that minimize the contour affinity
metric between points of two successive slices of a 3-D tooth germ. Only five
correspondences are presented for convenience. The pair (p , p ) is a wrong
correspondence.

TABLE I
OUTLYING CORRESPONDENCEREJECTIONEXAMPLE. CONTINUITY MEASURES

BETWEENFIVE POINTS OFTWO SUCCESSIVESLICES (SHOWN IN FIG. 3)

where is a matrix, where is the total number of
the contour nodes. Finally, we define the set of correspondence
matrices between equidistant slices

(23)

where is the total number of slices andis the distance be-
tween the slices under examination. Ifis equal to 1, point cor-
respondences are restricted to successive slice pairs.

Global affinities exploit and combine information from all
node correspondence matrix sets, successive pairs, interlaced

, etc. They can be used to discard any remaining fault
correspondences as follows. Let us assume that we have the
correspondence matrix sets and shown in Fig. 4. A
correspondence between node of the th slice and
of slice is valid only if

(24)

where is a node belonging to the th slice. If expression
(24) is verified, the initial correspondence between points
and is accepted, otherwise it is discarded.

In other words, a correspondence between two slices is valid,
only if it is sustained on more that one consecutive slices. For
example, a correspondence ( , ) from the correspon-
dence set is valid only if there is a valid correspondence (,

) and a correspondence ( , ) in the point corre-
spondence set (Fig. 4). If even one of the aforementioned corre-
spondences is missing, the correspondence (, ) is flagged
as invalid. On the other hand, the correspondence (, )
is missing and consequently the correspondence (, ) is
not accepted (the same stands for the nodes, and ).

Fig. 4. Example of point correspondences between three successive slices. The
points [p ; p ; p ] are considered as corresponding points, because the
correspondences[p ; p ], [p ; p ] and[p ; p ] are all valid.

D. Rotation and Translation Estimation

After having validated and pruned the node correspondences,
our algorithm determines the rigid transformation parameters
(2-D rotation and translation) aligning the respective slices. The
rotation matrix and the translation vector are estimated for
each slice, in order to minimize the mean square error between
the remaining corresponding nodes [28].

Let a sample covariance matrix (2 2) of the position of
corresponding nodes and in slices and , respectively,
be

(25)

where is the number of corresponding nodes andand
are the mean vectors of the coordinates of the corresponding
nodes in slices and , respectively. Let us perform a singular
value decomposition of

(26)

When , the optimum rigid object transforma-
tion parameters are determined uniquely as follows [28]:

(27)

(28)

(29)

(30)

and

if
if

(31)

Finally, the overall alignment algorithm is summarized in
Fig. 5.

IV. EXPERIMENTAL RESULTS

To evaluate our method, we applied the proposed algorithm to
the reconstruction of a large number of volumes. We used vol-
umes (e.g., Figs. 6 and 7) with knownground truth, i.e., aligned
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Fig. 5. Flowchart of the overall alignment algorithm.

Fig. 6. Reconstruction of a 3-D human skull volume of 140 slices.
(a) Multiplanar view of the volume before registration. (b) 3-D view of
the volume before registration. (c) Multiplanar view of the volume after
registration. (d) 3-D view of the volume after registration.

volumes which are used as reference for the performance of the
algorithm. They are manually, artificiallymisaligned, i.e. they
are randomly transformed using translations (, ) with ,
varying from 10 to 10 pixels and rotations varying from

40 to 40 degrees, in order to measure and confirm the reg-
istration accuracy and efficiency of our algorithm. Moreover,
we applied our method on volumes with unknown ground truth
(e.g., Figs. 8–11), i.e., volumes acquired by a microtome, with
no reference point. Thus, the alignment of these volumes is
completely blind, and an efficient way to evaluate the results
is a manual evaluation by the physician-researcher who origi-
nally provided the volumes and is aware of their appearance.

Furthermore, in order for our algorithm to operate properly, the
existence of an obvious foreground and background in the vol-
umes, is necessary, i.e., the object under alignment needs to be
segmented, either manually or automatically [29].

As aforementioned, our method was applied to the recon-
struction of an artificially misaligned 3-D human skull shown
in Fig. 6. Our method is not intended to be used for CT or MRI
images, since they are inherently aligned. We present the CT
examples only to show that we can recover the 3-D volumes
after artificial misalignment and verify the performance of our
method. Thus, the slices of the original CT
volume were transformed using translations (, ) with ,

varying from 10 to 10 pixels and rotations varying
from 40 to 40 degrees. The transformation parameters of
translation and rotation for each slice followed a uniform dis-
tribution. The misaligned slices are shown in Fig. 6(a) and
(b). The human skull volume has discontinuities and con-
secutive slices may differ significantly due to skull anatomy.
However, the correspondence evaluation was proven robust to
these shortcomings. Table II presents statistics on the align-
ment parameter errors , and . As can be seen,
median and mean translation and rotation errors are less than
1 pixel and 1 degree, respectively. Also, maximum errors are
slightly larger than 1 pixel and 1 degree, respectively, showing
the robustness of the proposed technique. Fig. 6(c) and (d)
present the realigned volume.

The same evaluation procedure was performed on a 3-D CT
scanned volume of a mechanical part with 109 slices shown in
Fig. 7. The algorithm aligned the artificially (randomly) mis-
aligned slices of the volume. The alignment parameter errors are
presented in Table III. As can be seen, median and mean trans-
lation and rotation errors are less than 1 pixel and 1 degree, re-
spectively. Also maximum errors are slightly larger than 1 pixel
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Fig. 7. Reconstruction of a 3-D scanned mechanical part volume of 109 slices.
(a) Multiplanar view of the volume before registration. (b) 3-D view of the
volume before registration. (c) Multiplanar view of the volume after registration.
(d) 3-D view of the same volume after registration.

TABLE II
ALIGNMENT PARAMETER ERRORSTATISTICS OF A SET OF A 3-D CT HUMAN

SKULL VOLUME REALIGNMENT BY THE PROPOSEDMETHOD (SHOWN IN FIG. 6)

and 1 degree, respectively, showing the robustness of the pro-
posed technique.

Furthermore, the algorithm was applied to the reconstruc-
tion of tooth germ volumes with unknown ground truth. The
performance of our method was compared to the manual align-
ment accomplished by an expert physician-researcher. Fig. 8
shows the reconstruction of a tooth germ by an expert den-
tist-researcher [Fig. 8(a) and (b)] and by our method [Fig. 8(c)
and (d)]. It is illustrated that human intervention fails to cor-
rectly align the slices, whilst our method produces much faster
alignment with higher accuracy, as confirmed by dentist special-
ists-researchers. The same stands for the examples presented
in Figs. 9–11, where the reconstruction of other three teeth
volumes is presented. In all the examples, a specialist (den-
tist-researcher) confirmed that the volumes reconstructed by
our method are of higher accuracy and visual quality. One
should note that the specialist needs approximately 2–3 d to
manually align a volume, whereas our algorithm performs the
reconstruction of the same volume in a minute, with better
results as confirmed by the specialist. Additionally, one can
take into consideration that the specialist is the only person
who knows the object under registration before its digitization
and its real appearance. This can also be observed by a simple
visual inspection (Figs. 8–11), especially at their multiplanar
view.

Sometimes, during serial sectioning, some slices tend to be
very deformed and have variable slice thickness. Thus, we

Fig. 8. Reconstruction of a 3-D tooth germ volume of 265 slices.
(a) Multiplanar and (b) 3-D view of the volume after manual alignment by an
expert dentist. (c) Multiplanar and (d) 3-D view of the volume after automatic
alignemnt.

Fig. 9. Reconstruction of a 3-D tooth germ volume of 194 slices.
(a) Multiplanar. (b) 3-D view of the volume after manual alignment by an
expert dentist. (c) Multiplanar. (d) 3-D view of the volume after registration.

TABLE III
ALIGNMENT PARAMETER ERROR STATISTICS OF A SET OF A 3-D CT

SCANNED MECHANICAL PART VOLUME REALIGNMENT BY THE

PROPOSEDMETHOD (SHOWN IN FIG. 7)

applied our algorithm to the reconstruction of some artificially
misaligned and volumes having varying slice thickness (3-D
human skull and 3-D CT scanned mechanical part). The
artificial misalignment was random and performed as described
previously, and the slice thickness variation was achieved using
two different and randomly chosen sets of sequential slices
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Fig. 10. Reconstruction of a 3-D tooth germ volume of 169 slices.
(a) Multiplanar. (b) 3-D view of the volume after manual alignment by an
expert dentist. (c) Multiplanar. (d) 3-D view of the volume after registration.

Fig. 11. Reconstruction of a 3-D tooth germ volume of 161 slices.
(a) Multiplanar. (b) 3-D view of the volume after manual alignment by an
expert dentist. (c) Multiplanar. (d) 3-D view of the volume after registration.

(ten slices each) from both volumes and fulfilled as depicted
in Figs. 12 and 13. Tables IV and V present the alignment
errors of our method. Although the errors are higher than
the corresponding ones, when there is no difference in slice
thickness, they are still very low and satisfactory, showing the
robustness of the proposed technique.

Moreover, we applied the algorithm to the realignment of an
original already aligned 3-D human skull volume (the original
volume used in Fig. 6). The results shown in Table VI illustrate

Fig. 12. Slice thickness transformation in ten slices of a volume. 10 parallel
slices are transformed in order to have variable thickness.

Fig. 13. Slice thickness transformation in ten slices of a volume. 10 parallel
slices are transformed in order to have variable thickness.

TABLE IV
ALIGNMENT ERRORSTATISTICS OF A SET OF A 3-D CT HUMAN SKULL

VOLUME WITH SLICE THICKNESSVARIATION (SHOWN IN FIGS. 12 AND 13)
REALIGNED BY THE PROPOSEDMETHOD

TABLE V
ALIGNMENT ERROR STATISTICS OF A SET OF A 3-D CT SCANNED

MECHANICAL PART VOLUME WITH SLICE THICKNESS VARIATION

(SHOWN IN FIGS. 12AND 13) REALIGNED BY THE PROPOSEDMETHOD

that our algorithm is unbiased. As can be seen, median and mean
translation and rotation errors are less that 0.2 pixel and 0.1 de-
gree, respectively. Also, maximum errors are about 1 pixel and
less than 0.5 degree, respectively, proving the unbiasedness of
our method.

Finally, let us notice that the algorithm has a computational
complexity , where is the number of slices and is
the number of nodes of the deformable model. The computation
time is approximately 1 min for the reconstruction of a

volume on a Pentium III (700 MHz) workstation
under Windows 2000 Professional without any particular code
optimization.
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TABLE VI
ALIGNMENT ERROR STATISTICS OF AN ALREADY ALIGNED SET OF A

3-D CT HUMAN SKULL VOLUME (THE GROUND TRUTH) THAT WAS

APPLIED TO THEPROPOSEDALGORITHM

V. CONCLUSION

A fast and robust algorithm for the alignment of 2-D serially
acquired slices was presented. A 2-D physics-based deformable
contour modeling technique was used to parameterized the
contour of each slice of the volume under registration. The
model parameters was used to establish mode correspondences
among contour nodes of consecutive slices using special mode
affinity metrics. Local and global constraints was exploited to
prune node correspondences that do not make sense, and finally,
various slices were aligned by using valid node correspondences
and the calculation of the optimal rotation and translation
matrices. The proposed technique is proven to produce very
low alignment errors. It is much faster and more accurate than
manual alignment.

Furthermore, no particular registration direction is privileged
by the proposed approach and the use of a global affinity
measure eliminates error propagation. Also, the low frequency
modal parameterization of the object contours makes the tech-
nique robust to missing data or outliers and to slice thickness
variability.

The low computation time and the good quality of the
alignment with respect to manual techniques makes the method
a promising tool for the reconstruction of 3-D anatomical
structures.
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